DNS Caching: Running on Zero

Saleem Bhatti
School of Computer Science
University of St Andrews
(Non-)Effectiveness of DNS caching

• DNS caching has reduced effectiveness for edge sites:
 – trace-driven emulation (no experiments)
 – A records could have low TTL (e.g. below 1000s)
 – such low TTL would have low impact on DNS load
DNS experiments at StA [1]

• Experiments in Q4/2009
• Modify TTL values of records in operational DNS server at School of CS, St Andrews
 – 4 DNS servers: Windows ActiveDirectory
 – ~400 DNS clients: Windows, Linux, MacOSX, BSD
• TTL values for successive 7-day periods during normal semester:
 – changed DNS TTL on ActiveDirectory
 – TTL values used: 1800s, 30s, 15s, 0s
• Configured clients not to cache.
DNS experiments at StA [2]

• Passive collection of packets via port mirror:
 – `tc pdump(8)` targeting `port 53`
 – Captured all DNS packets

• Results shown on following slides are for:
 – A record requests for servers only during the capture period (relevant to ILNP, and less ‘noisy’ data)
 – using 1 second buckets

• Basic statistics:
 – on time-domain data

• Spectral analysis:
 – examination of request rates

• Analysis: home-brew `python` scripts, NumPy package
2009: Basic dataset meta-data

<table>
<thead>
<tr>
<th>Data set name</th>
<th>TTL [s]</th>
<th>Duration [s]1</th>
<th>Total DNS packets captured2</th>
<th>Number of A record requests for 67 servers3</th>
</tr>
</thead>
<tbody>
<tr>
<td>dns1800</td>
<td>1800</td>
<td>601,200</td>
<td>41,868,522</td>
<td>2,004,133</td>
</tr>
<tr>
<td>dns30</td>
<td>30</td>
<td>601,200</td>
<td>71,105,247</td>
<td>2,648,796</td>
</tr>
<tr>
<td>dn15</td>
<td>15</td>
<td>601,200</td>
<td>56,472,027</td>
<td>3,240,675</td>
</tr>
<tr>
<td>dns0</td>
<td>0</td>
<td>601,200</td>
<td>55,868,573</td>
<td>4,501,590</td>
</tr>
</tbody>
</table>

1 from tcpdump timestamps, rounded to nearest second, 7 days = 604,800 seconds, less 3600s temporal guard band for TTL value changes = 601,200 seconds

2 includes all request and response packets to/from port 53 (TCP and UDP), including erroneous requests, retransmissions etc

3 servers that were active during the 4 weeks of data capture
dns1800: A record requests TTL=1800s

Mean: 3.33 request/s
Std Dev: 3.47 requests/s
Max: 183 requests/s
dns30: A record requests TTL=30s

Mean: 4.41 request/s
Std Dev: 4.27 requests/s
Max: 261 requests/s
dns15: A record requests TTL=15s

![Graph showing DNS A record queries]

<table>
<thead>
<tr>
<th>Day</th>
<th>Queries / second</th>
</tr>
</thead>
<tbody>
<tr>
<td>327</td>
<td></td>
</tr>
<tr>
<td>328</td>
<td></td>
</tr>
<tr>
<td>329</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
</tr>
<tr>
<td>331</td>
<td></td>
</tr>
<tr>
<td>332</td>
<td></td>
</tr>
<tr>
<td>333</td>
<td></td>
</tr>
<tr>
<td>334</td>
<td></td>
</tr>
<tr>
<td>335</td>
<td></td>
</tr>
</tbody>
</table>

Mean: 5.39 request/s
Std Dev: 4.85 requests/s
Max: 123 requests/s
dns0: A record requests TTL=0s

Mean: 7.49 request/s
Std Dev: 4.93 requests/s
Max: 3.69 requests/s
2009 Summary of basic statistics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dns1800</td>
<td>3.33</td>
<td>3</td>
<td>3.47</td>
<td>183</td>
</tr>
<tr>
<td>dns30</td>
<td>4.41</td>
<td>4</td>
<td>4.27</td>
<td>261</td>
</tr>
<tr>
<td>dns15</td>
<td>5.39</td>
<td>4</td>
<td>4.85</td>
<td>123</td>
</tr>
<tr>
<td>dns0</td>
<td>7.49</td>
<td>7</td>
<td>4.93</td>
<td>369</td>
</tr>
</tbody>
</table>

60x drop in TTL values results in ¾x increase in A record requests. 0 TTL gives (only) 2¼x increase.
2009 Basic spectral analysis

• Create approximate periodogram by counting occurrences of bucket sizes:
 – have used 1s bucket
 – so size of bucket is number of requests/s

• Comparison of periodogram:
 – shows changing dynamics of request rates
 – gives a better view of the trends in request rates
2009 periodograms: 1800s ...

7-day DNS A record query rates, dns2009-1800

7-day CDF for DNS A record query rates, dns2009-1800
... 30s, 15s, 0s
What is possible if DNS TTL is zero?

• Frequent, authenticated DNS updates:
 – Very useful for mobility/multi-homing aspects of ILNP
 – Location updates in DNS give changes in connectivity
 – Simulated by Pappas, Hailes, & Giaffreda, published in LCS 2002

• Load balancing and VM mgmt for data centres

• Edge-site based multi-path and TE control options:
 – multiple Locator values and DNS L record preferences

• Help defend against certain network attacks:
 – DNS cache poisoning for end-sites (that do not use DNSSEC)
 – DDoS: fast-cycle multi-homing (i.e. a kind of “fast-flux” DNS for defence rather than attack)
Who would set DNS TTLs so low?

• Real A record values for some services:
 – TTL = 60 seconds: yahoo
 – TTL = 20 seconds: akamai
 – TTL = 0 seconds: St Andrews, Computer Science

• Note that a site would NOT set low TTLs for:
 – Its own NS records, which identify its DNS servers.
 – The A records related to its NS records.
 – A, CNAME, PTR records for services, e.g. email MX
 – A (mobile) site can make remote some or all of its authoritative DNS servers; some sites do so today.
Summary and Conclusion

• Summary:
 – Zero TTL values for edge-site DNS records possible
 – DNS load with zero DNS TTLs seems manageable

• Conclusion:
 – Frequent DNS accesses (low TTL) seem practical

• Future work:
 – impact of the use of Secure DNS Dynamic Update and cryptographic authentication of DNS look-ups

• A Very Big Thanks to:
 – the Sys Admin Group at cs.st-andrews.ac.uk for implementing DNS TTL changes
dig – hosts at cs.st-andrews.ac.uk

adnams
marston
wells
youngs
hopback
innis
gunn

mcmullen
mightyoak
greatoakley
threebs
morrel
brakspear
ringwood