Fast, Secure Failover for IP

Saleem Bhatti & Ditchaphong Phoomikiatissak
University of St Andrews, UK

Ran Atkinson
Cheltenham Research, USA

http://ilnp.cs.st-andrews.ac.uk/

S. N. Bhatti, D. Phoomikiatissak, and R. Atkinson,
“Fast, Secure Failover for IP”,
IEEE MILCOM 2014, 08 Oct 2014
Outline

• Problem space
• Introduction to ILNP
• IPsec failover solution using ILNP:
 • architecture
 • evaluation
• Summary
• Questions
Problem space
Graceful failover for IPsec

• **IPsec graceful failover currently not defined:**
 - no standard mechanism
 - proprietary solutions exist
 - (IPsec is the basis for military HAIPE IP encryptors)

• **Graceful:**
 - IPsec session should not be interrupted
 - interruption of IPsec traffic should be minimal
 - failover should be invisible to end-systems
IPsec today

• IPsec Security Association (SA) binds to an IP address:
 • IP address has topological semantics
 • IP address is used as a form of identity

• Failover:
 • connectivity change may involve change of IP address range (new IP routing prefix)
 • change in IP prefix changes end-system state for IPsec (and also for upper layer protocols, e.g. TCP)
End system state for an IP session

- Example: end-system state in TCP/IP
- IP addresses, A
- Transport-layer Port numbers, P
- Changes to interface address binding has impact higher up the stack

\[
\langle \text{tcp} : P_X, P_Y, A_X, A_Y \rangle \langle \text{ip} : A_X, A_Y \rangle \langle \text{i/f} : A_X \rangle
\]
Current naming architecture

<table>
<thead>
<tr>
<th>Protocol Layer</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>FQDN or IP address</td>
</tr>
<tr>
<td>Transport</td>
<td>IP address (+ port number)</td>
</tr>
<tr>
<td>Network</td>
<td>IP address</td>
</tr>
<tr>
<td>(Interface)</td>
<td>IP address</td>
</tr>
</tbody>
</table>

Entanglement 😞

FQDN = fully qualified domain name
Introduction to the Identifier Locator Network Protocol (ILNP)
New naming architecture: IP vs ILNP

<table>
<thead>
<tr>
<th>Protocol Layer</th>
<th>IP</th>
<th>ILNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>FQDN or IP address</td>
<td>FQDN (RFC1958)</td>
</tr>
<tr>
<td>Transport</td>
<td>IP address (+ port number)</td>
<td>(Node) Identifier (+ port number)</td>
</tr>
<tr>
<td>Network</td>
<td>IP address</td>
<td>Locator</td>
</tr>
<tr>
<td>(Interface)</td>
<td>IP address</td>
<td>(dynamic mapping)</td>
</tr>
</tbody>
</table>

Entanglement 😞 **Separation 😊**

FQDN = fully qualified domain name
End system state with ILNP

- Example: end-system state in TCP/ILNP:
 - within the context of IPv6
- Locator value, L
- Port numbers, P
- Node Identifier (NID) values, I

\[
\langle tcp : P_X, P_Y, I_X, I_Y \rangle \langle ilnp : L_X, L_Y \rangle \langle i/f : (L_X) \rangle
\]

\[
\langle tcp : P_X, P_Y, A_X, A_Y \rangle \langle ip : A_X, A_Y \rangle \langle i/f : A_X \rangle
\]
Locator/Identifier Split for ILNP

• **Locator, L:**
 - Topologically significant.
 - Names a (sub)network
 - Similar to today's network routing prefix
 - Used only for routing and forwarding in the core.

• **(Node) Identifier, NID:**
 - Is not topologically significant.
 - Names a logical/virtual/physical node, does **not** name an interface.

• **Upper layer protocols bind only to Identifier.**
ILNP: Engineering

• Main architectural ideas can be applied as extensions to both IPv4 and IPv6:
 • RFCs 6740-6748 (Experimental, IRTF RRG)
• **ILNP extensions to IPv6 → ILNPv6.**
• Non-ILNP nodes see an ordinary IPv6 packet.
• ILNPv6 end-systems see an ILNPv6 packet.
• Focus here is on IPv6, as the engineering is cleaner, but IPv4 is also possible.
ILNPv6

• A set of extensions to IPv6:
 • Same packet format as IPv6, with extensions
 • No changes required in the IPv6 routers
 • Incrementally deployable on IPv6 networks
 • Backwards compatible with IPv6 devices

• Split 128-bit IPv6 address:
 • 64-bit Locator (L64) -- (sub)network name.
 • 64-bit Identifier (NID) -- node name.
IPv6 addresses and ILNPv6

IPv6 (as in RFC3587 + RFC4291):

| 3 | 45 bits | 8/16 bits | 64 bits |
|---+--------+-----------+---------|
| | Unicast Routing Prefix | Interface Identifier |

ILNPv6:

| 64 bits | 64 bits |
|---------+---------|
| Locator | Node Identifier (NID) |

same syntax and semantics as IPv6 routing (address) prefix
so IPv6 core routers work as today

these bits only examined and acted upon by end systems
IPv6 packet header

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Version| Traffic Class | Flow Label |
+-+
| Payload Length | Next Hdr | Hop Limit |
+-+
| |
| |
| |
+- Source Address -+
| |
| |
| |
| |
| |
+-+
| |
| |
| |
| |
| |
+- Destination Address -+
| |
| |
| |
| |
| |
+-+
ILNPv6 packet header (end-system)

```
+---------------------------------------+ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
<table>
<thead>
<tr>
<th>Version</th>
<th>Traffic Class</th>
<th>Flow Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload Length</td>
<td>Next Hdr</td>
<td>Hop Limit</td>
</tr>
<tr>
<td>Source Locator</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Source Identifier</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Destination Locator</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Destination Identifier</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
```
IPsec failover solution using ILNP
IPsec / HAIPE with ILNP Mobility

- IPsec / HAIPE with ILNP binds only to NID:
 - NID is used in transport layer state
 - NID is not topologically significant
 - preserves end-to-end semantics

- **NID-L binding change does not impact IPsec:**
 - dynamic update of NID-L binding similar to that for Mobile IPv6
 - change in NID-L binding does not impact transport layer sessions
 - Hence, IPsec can be used end-to-end during failover
Hard-handoff [1]

- Start with L₁
- Change IP-level connectivity
- Change L value to L₂
- Use new L₂ value
- Possible packet loss while correspondent node does know about L₂
Soft handoff [1]

- Start with L_1
- In overlap of cells, use both L_1 and L_2
- Then, handoff to L_2
- Multihoming during handoff
- **Network-layer soft handoff.**

![Diagram showing soft handoff process with symbols L_1 and L_2.]
ILNP IPsec advantages

• Completely end-to-end model
• No middleboxes/proxies required – such boxes can be:
 • a single point of failure
 • performance bottleneck
 • point of security attack
• No tunnelling:
 • apart from that which might already be used by IPsec
• No routing changes required:
 • trust boundaries confined to end-systems/sites
Testbed evaluation

Emulated Loss and Delay

R router
L L64 (routing prefix) values
X, Y end-systems
Traffic emulation and metrics

TABLE IV
APPLICATION TRAFFIC EMULATION, FLOWS LASTED 65S.

<table>
<thead>
<tr>
<th>Description</th>
<th>Data Rate [Kbps]</th>
<th>Pkt Size [bytes]</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skype / VoIP</td>
<td>64</td>
<td>300</td>
<td>[55], [56]</td>
</tr>
<tr>
<td>YouTube / ViIP</td>
<td>658(^a)</td>
<td>1400</td>
<td>[57]</td>
</tr>
</tbody>
</table>

\(^a\) This is slightly more than the 632Kbps reported in [57].

TABLE V
METRICS USED FOR PERFORMANCE EVALUATION.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Units</th>
<th>Summary</th>
<th>Fig.(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss</td>
<td>%</td>
<td>Application-layer (STP)</td>
<td>4a</td>
</tr>
<tr>
<td>f-delay</td>
<td>ms</td>
<td>Time to complete failover</td>
<td>4b</td>
</tr>
<tr>
<td>f-overhead</td>
<td>–</td>
<td># LU/LU-ACK handshakes</td>
<td>4c</td>
</tr>
</tbody>
</table>

\(^a\) The figure showing the related testbed measurements results.
Application layer loss

The mean packet loss of VoIP traffic

<table>
<thead>
<tr>
<th>Test Scenario</th>
<th>No emulated loss</th>
<th>10% Emulated Loss</th>
<th>20% Emulated Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN</td>
<td>20%</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>MAN</td>
<td>18%</td>
<td>13%</td>
<td>8%</td>
</tr>
<tr>
<td>WAN</td>
<td>16%</td>
<td>11%</td>
<td>6%</td>
</tr>
</tbody>
</table>

The mean packet loss of Video traffic

<table>
<thead>
<tr>
<th>Test Scenario</th>
<th>No emulated loss</th>
<th>10% Emulated Loss</th>
<th>20% Emulated Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN</td>
<td>18%</td>
<td>13%</td>
<td>8%</td>
</tr>
<tr>
<td>MAN</td>
<td>16%</td>
<td>11%</td>
<td>6%</td>
</tr>
<tr>
<td>WAN</td>
<td>14%</td>
<td>9%</td>
<td>4%</td>
</tr>
</tbody>
</table>
Failover delay

The mean hand-off delay of VoIP traffic

The mean hand-off delay of Video traffic
Failover overhead

The mean sent LU per hand-off of VoIP traffic

The mean sent LU per hand-off of Video traffic
Summary
ILNP IPsec failover

• IPsec failover with ILNP:
 • mobility model

• End-to-end model - advantages:
 • no proxy/middlebox
 • trust boundary
 • no additional attack vectors via proxy

• Performance:
 • virtually zero gratuitous loss with soft handoff
 • low overhead
Contacts

• Thank you!

• Saleem Bhatti
 • Professor of Computer Science
 University of St Andrews, UK
 saleem@cs.st-andrews.ac.uk
 http://saleem.host.cs.st-andrews.ac.uk/

• Ran Atkinson
 • Independent Consultant
 Cheltenham Research, USA
Backup Slides
ILNP: Locator Properties

• Locator names an IP Subnetwork.
• Locator is equivalent to an IP Routing Prefix.
• Nodes can change their Locator values during the lifetime of an ILNP session:
 • Enables mobility, multi-homing, NAT, end-to-end IPsec, site-controlled traffic engineering, etc.
• Multiple Locators can be used simultaneously
 • Enables multi-homing, seamless mobility, end-to-end IPsec, traffic engineering, etc.
• Locators NEVER used by TCP, UDP, SCTP, etc.
ILNP: Identifier Properties

• Identifier names a **node**, not an **interface**
• **Remains constant** during the lifetime of a transport session
 • Enables IPsec, NAT, & other improvements
• Nodes have multiple Identifiers concurrently:
 • Only one identifier for a given ILNP session
 • Identifiers are stable over time
• Special NID formats also supported by ILNP:
 • IPv6 Privacy ID extensions, CGAs, etc
• Only NID is used by IPsec, TCP, UDP, SCTP, etc.
Hard-handoff [2]

Hard handoff
(similar to Binding Update for Mobile IPv6)
(new L values can be learned from IPv6 router advertisements)
Soft handoff [2]

(locator change triggered)

\(<\text{IP}: \text{L}_1^x, \text{L}_y^y>\)

\(<\text{IP}: \text{L}_1^x, \text{L}_y^y>\)

\(<\text{IP}: \text{L}_2^x, \text{L}_y^y>\)

\(<\text{IP}: \text{L}_1^x, \text{L}_2^x>\)

\(<\text{IP}: \text{L}_2^x, \text{L}_2^x>\)

\(<\text{IP}: \text{L}_y^y, \text{L}_1^x>\)

\(<\text{IP}: \text{L}_y^y, \text{L}_2^x>\)

\(\text{LU-ACK} (\text{L}_2^x)\)

\(\text{LU} (\text{L}_2^x)\)

Soft handoff

(new L values can be learned from IPv6 router advertisements)

X is multihomed during handoff

Copyright, Saleem Bhatti, Oct 2014