Networked Systems Research is Irrelevant

Saleem Bhatti School of Computer Science, University of St Andrews http://www.cs.st-andrews.ac.uk/~saleem/

Apologies to Rob Pike

 Rob Pike, Bell Labs, Feb 2000 "Systems Software Research is Irrelevant" http://herpolhode.com/rob/utah2000.pdf

Acknowledgements

- To some grumpy, old, men: Ran Atkinson, Ken Carlberg, Jon Crowcroft, Steve Hailes, Tristan Henderson, Peter Kirstein, Graham Knight, Søren-Aksel Sørensen
- To a couple of after-dinner meetings: Chip Elliot, Dongman Lee, Craig Partridge
- ... and to various symposia (of the classic, Greek kind :-)

Questions, not answers!

• This conference is about the "Future Internet".

- My talk is a (light-hearted) look at some potentially serious **questions** for the research efforts for the "Future Internet".
- I do not know the right answers ...
- I probably have the wrong questions ;-)
- The never ending search for "clue" ...

Why do we do research? [1]

- What will the Future Internet be like?
- None of us knows.
- Each of us has our own ideas of what would be good to have in the future.
- There is a lot of **technology** out there which can (dis)appear quickly.
- We would like to think we have an **architecture** in which to use it all.

Why do we do research? [2]

- We are here presenting lots of interesting ideas and work in progress.
- For the Future Internet we would all like our ideas to be used to be **Deployed**.
- Typically, we would like people to use our ideas because they bring something new to the network some improvement.
- Lots of other things still to fix:
 - e.g. RFC3869, RFC4948, RFC4984

Some non-functional requirements

- 1. **Deployability:** Is it easy for us to get our ideas into the network and/or end-systems?
- 2. *Backward Compatibility*: Can we get our ideas into the network without breaking what is already in the network and/or end systems?
- How important **are** these two issues today?
- How important **should** they be for the future?

Deployability and Backward Compatibility?

- How much do we care about these?
- It seems they are required in some form?
 - Or are they?
 - virtualisation + programmability
- How do we prioritise Deployability and Backward Compatibility?
- How much do we they matter for the Future Internet?

Mobile IP [1]

Mobile IP [2]

Transparent to non-mobile hosts

- Does not break/change existing IP addressing and routing
- Can be introduced into the network as required (incrementally)
- Normal (unicast) routers do not need to be modified
- ✔ Does not affect DNS usage

- X Complex architecture:
 - use of two addresses
 - use of agents
- X Asymmetric routing:
 - could be inefficient
 - ► TE/QoS
 - higher layer protocol operation (e.g. TCP)

X Security:

- firewall configuration
- authentication
- end-to-end security
- 🗙 No soft hand-off

Mobile IP [3]

- Stateless address auto-configuration:
 - find an address (CoA) for use at the FN
- Neighbour discovery:
 - find default router
- No FA required to support mobility:
 - MH takes care of home address and foreign address

- Need dynamic DNS update support
- Route optimisation:
 - IPv6 Binding Update
 - send CoA to remote endsystem
 - correspondent node knows about mobility
- Security (?):
 - authentication and privacy

Mobile IP [4]

- Mobile IPv4 (MIPv4):
 - not widely implemented or deployed at present
 - complex protocol: mobile node (MN), Home Agent (HA), Foreign Agent (FA)
 - numerous optional optimisations have been proposed
- Mobile IPv4 (MIPv6):
 - also not widely implemented or deployed at present
 - protocol similar to MIPv4 (some optimisations)
 - even more complex with numerous extensions proposed
- IETF MEXT WG

NAT/NAPT [1]

H1	G	Internet	
H2	Node	IP Address	Port range
	H1	192.0.0.2	5100-5199
H3	H2	192.0.0.3	5200-5299
	H3	192.0.0.4	5300-5399
	G1	192.0.0.1	5400-5499
	G1 (public)	3.1.2.3	-

Computer Science St Andrews © Saleem Bhatti G1 uses its 1 public IP address to handle traffic to/ from the Internet for itself and hosts H1, H2, & H3.

 So, G1 is using NAPT and has different TCP/UDP port numbers in public versus on the private LAN segment.

NAT/NAPT [2]

- Some applications use the IP address
 - e.g. FTP uses full IP address
- Rendezvous problems many sites deploy either NAT or NAPT for perceived security advantages:
 - primarily: remote nodes are blocked from initiating sessions with hosts behind the NAT/NAPT gateway.
 - ▶ this can affect some applications (e.g., VoIP).
 - so need a fix for this (e.g., STUN or ALGs)
- Some sites might deploy NAT or NAPT to get IP address portability or to conserve IPv4 addresses:
 - so then engineering fixes are required to deal with the applications that break

Engineering or Architecture?

My definitions for this talk:

- Engineering: creating fixes for problems within the current architecture by looking at a focused (narrow) problem space.
- Architecture: considering more than just the focused problem space and looking at the design issues of how things work today around that problem space.

How can I test my new systems?

- We are not doing so badly here :-)
 - People generally agree it is good to build and break stuff!
- We have research programmes and testbeds on which to try things out:
 - PlanetLab, Emulab, GENI/FIND, FIRE
- We might even be tempted to share our data and help others to reproduce our experiments ... like the other grown up sciences ;-)

How do we evaluate our new systems?

- What are our evaluation criteria?
- Do we have any metrics that are commonly used?
 - e.g. IPPM WG, TMRG WG
- Where are our shared data sets?
 - e.g. CAIDA, CRAWDAD
- Are these useful for the Future Internet?

Is the end-system stack untouchable?

- Once I have a new system tested, how do I go about getting real deployment?
- How do I get this into an end-system stack?
- How many "new" end-system protocols do users have today?
- Are we simply hostage to the whims of end-system OS vendors?
- (Meanwhile, the peer-to-peer /overlay chaps are doing rather well ... :-)

Are the network devices untouchable?

- What if I have a new or enhanced network protocol?
- How do I get this into a **real** network device stack on a **real** network?
 - (GENI :-)
- How does anyone get a new/enhanced network protocol deployed?
- Are we simply hostage to the whims of network device vendors?

Do users care about any of this?

- What about the users?
 - network operators
 - sys/net admins
 - content providers
 - end-users

- How do their needs get considered?
- "Customer pull" could help get our ideas deployed.

Do we have a shared vision?

• For the Future Internet, do we all share the same vision future R&D?

- Do we need to have a shared vision?
- Do we at least have some understanding and appreciation of the different positions people have taken?
- How do we compare and evaluate our different systems?
- How do we know when we are finished?

Summary

- There are lots of questions (many of them non-technical) we need to ask ourselves for the Future Internet.
- There are likely to be strong nonfunctional requirements affecting what gets used and deployed.
- Do we know the right questions to ask for research into the Future Internet?

