Larging it for the GRID

Big Networking for Big Science

Saleem Bhatti Computer Science, UCL

http://www.cs.ucl.ac.uk/staff/S.Bhatti/

Jon Crowcroft Computer Laboratory, Cambridge

Let's go Large

- User in Glasgow wants to access the HGP data
- HGP database:
 - 0.25PB (growing at 1TB/week)
- SuperJANET4 (SJ4):
 - 10Gb/s backbone (still <2.5Gb/s access in places)
- Extreme case transfer all of the HGP data
- So, **iff** user gets **all** the SJ4 backbone capacity:
 - transfer of HGP data still takes ~55½ hours!
 - no one else can use the network at all during this time
- Can't do it! 🕾

General problems

- Changing networking landscape:
 - access speeds vs. core speeds
 - over-provisioning may not cut it in the future
- Changing research usage:
 - GRID users: HEP, bio-informatics, etc.
- Changing and (mostly) unpredictable traffic patterns (access and core)
- Complex system behaviour:
 - learning curve technical and operational
 - next generation HE networks (SJ5, SJ6 ...)
- Lots of systems-oriented research required

So what can we do about it?

- Build a new and better network (of course)!
 - very high capacity (Gb/s \Backsightarrow Tb/s \Backsightarrow Pb/s)
 - users can have access from their desktop
 - provides (QoS-)controlled access
- Two broad problems to consider:
 - **control**: how do we mix different types of traffic and still control the traffic flows in the network sensibly?
 - **capacity**: what happens when you run a very high capacity network with very high capacity access links?
- This talk is about the *Research* issues:
 - there are also *Operational* issues! (but that's SEP [])

Control: network edge

- GRS project (Mar2002 Feb2004)
- http://www.cs.ucl.ac.uk/staff/S.Bhatti/grs/
 - EU-DataGrid http://www.eu-datagrid.org/
- Looking at network resource "scheduling":
 - edge system admission control + core mechanisms
 - "booking" (reserving) network capacity in advance
- Not specific to any particular QoS mechanisms:
 - we will test with DIFFSERV at the edge and core
 - could also use INTSERV, MPLS, (sub-)λ, ...
- Will allow edge-to-edge control:
 - including multi-domain and heterogeneous networks

GRS outline architecture

Control: core network

- MB-NG project (May2002 Apr2004)
- http://www.mb-ng.net/
- Looking at high-speed QoS provisioning using:
 - DIFFSERV
 - MPLS
- UKERNA and Cisco are project partners
- Using SJ4 development network
- Managed bandwidth service for UK academia:
 - site-to-site (possibly end-to-end)
 - multi-domain

MB-NG network

Capacity

- UKLIGHT (kick-off Q4/2002?)
- http://www.cs.ucl.ac.uk/research/uklight/
- Provide an optical networking infrastructure for network systems research in the UK
- Very-high speed (multi-gigabits)
- International connectivity
- Current gang includes:
 - UKERNA, UCL, Cambridge, Aston, Brighton, Manchester, Southampton, Lancaster
- Needs funding so show me the money □

UKLIGHT: international

General research areas: 3 Streams

- Stream 1: revisit "traditional" areas:
 - high performance tuning
 - AAA, QoS mechanisms, transport protocols, routing, performance analysis, accounting, pricing, etc.
- Stream 2: optical/high-speed infrastructure:
 - communities and community-oriented systems
 - virtual organisations, active and adaptable systems, integration with optical systems (access to λ ?)
- Stream 3: photonics + computer science + nets:
 - optical logic, security mechanisms, routing and traffic control, multiplexing, active networking, etc.

Acknowledgements

- Many people involved with promoting the case for large GRID networking:
 - computer science, electronic engineering, photonics, high-energy physics, network services
- **GRS**:
 - http://www.cs.ucl.ac.uk/staff/S.Bhatti/grs/
- MB-NG:
 - http://www.mb-ng.net/
- UKLIGHT:
 - http://www.cs.ucl.ac.uk/research/uklight/

Questions?

A good way to get answers ...

