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Abstract—The high volume of packets and packet rates of
traffic on some router links makes it exceedingly difficult for
routers to examine every packet in order to keep detailed
statistics about the traffic which is traversing the router. Sampling
is commonly applied on routers in order to limit the load incurred
by the collection of information that the router has to undertake
when evaluating flow information for monitoring purposes. The
sampling process in nearly all cases is a deterministic process
of choosing 1 in every N packets on a per-interface basis, and
then forming the flow statistics based on the collected sampled
statistics. Even though this sampling may not be significant
for some statistics, such as packet rate, others can be severely
distorted. However, it is important to consider the sampling
techniques and their relative accuracy when applied to different
traffic patterns. In this paper, we assess the performance of the
sampling process as used in NetFlow in detail, and we discuss
some techniques for the compensation of loss of monitoring detail.

I. INTRODUCTION

Packet sampling is an integral part of passive network

measurement on today’s Internet. The high traffic volumes on

backbone networks and the pressure on routers has resulted

in the need to control the consumption of resources in the

measurement infrastructure. This has resulted in the definition

and use of estimated statistics by routers, generated based on

sampling packets in each direction of each port on the routers.

The aims of this paper is to analyse the effects of the sampling

process as operated by NetFlow, the dominant standard on

today’s routers.

There are three constraints on a core router which lead to

the use packet sampling: the size of the record buffer, the

CPU speed and the record look-up time. In [6], it is noted

that in order to manage and analyse the performance of a

network, it is enough to look at the basic statistical measures

and summary statistics such as average range, variance, and

standard deviation. However, in this paper we analyse both

analytically and practically the accuracy of the inference of

original characteristics from the sampled stream when higher

order statistics are used.

This paper focuses on the inference of original network

traffic characteristics for flows from a sampled set of packets

and examines how the sampling process can affect the quality

of the results. In this context, a flow is identified specifically,

as the tuple of the following five key fields: Source IP address,

Destination IP address, Source port number, Destination port

number, Layer 4 protocol type.

A. NetFlow memory constraints

A router at the core of an internet link is carrying a large

number of flows at any given time. this pressure on the router

entails the use of strict rules in order to export the statistics and

keep the router memory buffer and CPU resources available to

deal with changes in traffic patterns by avoiding the handling

of large tables of flow records. Rules for expiring NetFlow

cache entries include:

• Flows which have been idle for a specified time are

expired and removed from the cache (15 seconds is

default)

• Long lived flows are expired and removed from the cache

(30 minutes is default)

• As the cache becomes full a number of heuristics are ap-

plied to aggressively age groups of flows simultaneously

• TCP connections which have reached the end of byte

stream (FIN) or which have been reset (RST) will be

expired

B. Sampling basics

Distributions studies have been done extensively in lit-

erature. In brief conclusion, internet traffic is believed to

have Heavy-tailed distribution, self-similar nature, Long Range

Dependence [2]. Sampling has the following effects on the

flows:

• It is easy to miss short flows [14]

• Mis-ranking on high rate flows [4]

• Sparse flow creation [14]

Packet sampling:

The inversion methods are of little to no use in practice for

low sampling probability q, such as q = 0.01 (1 packet in

100) or smaller, and become much worse as q becomes smaller

still. For example, on the Abilene network, 50% sampling was

needed to detect the top flow correctly [4].

Flow sampling:

Preserves flows intact and the sampling is done on the flow

records. In practice, any attempt to gather flow statistics

involves classifying individual packets into flows. All packet

meta-data has to be organised into flows before sampling can

take place. This involves more CPU load and more memory

if one uses the traditional hash table approach with one entry

per flow. New flow classification techniques, such as bitmap

algorithms, could be applied but there is no practical usage in

this manner currently.



II. VARIATION OF HIGHER ORDER STATISTICS

In this section we look at a more detailed analysis of the

effect of sampling as performed by netflow on higher order

statistics of the packet and flow size distributions. For the

analysis of packet sampling application is used by NetFlow,

we emulated the NetFlow operation on a 1 hour OC-48 trace,

collected from the CAIDA link on 24th of April 2003. This

data set is available from the public repository at CAIDA [7].

The trace comprises of 84579462 packets with anonymised

source and destination IP addresses. An important factor to

rememberer in this work is the fact that the memory constraint

on the router has been relaxed in generating the flows from

the sampled stream. This means that there maybe more than

tens of thousands of flow keys present at the memory at a

given time, while in NetFlow, the export mechanism empties

the buffer list regularly which can have a more severe impact

on the resultant distribution of flow rates and statistics3.

A. Effects of the short time-out imposed by memory con-

straints

Table I illustrates the data rates d(t) per interval of mea-

surement. Inverted data rates, by dividing d(t) by the sampling

probability q, are shown as dn(t).

TABLE I
THE STATISTICAL PROPERTIES ON DATA RATES d(t)

Dataset,bin(secs) STD Skewness Kurtosis

d(t), 30 2.2274e+07 0.5421 0.6163
dn(t), 30 2.9109e+07 0.3837 0.4444

d(n) − dn(t), 30 1.6748e+07 -0.2083 0.7172

d(t), 120 7.8650e+07 0.7398 1.6190
dn(t), 120 9.5216e+07 0.3274 0.9268

d(t) − dn(t), 120 3.7652e+07 -0.2971 -1.1848

d(t), 300 1.8491e+08 1.3058 3.7451
dn(t), 300 2.1248e+08 1.1016 2.5408

d(t) − dn(t), 300 6.1039e+07 0.1840 -1.1628

As observed in table I, the mean does not have a great

variation, possibly because distributions of packet sizes within

single flows do not exhibit high variability. The standard

deviation of the estimated data rate is higher than the cor-

responding standard deviation for the unsampled data stream.

In the absence of any additional knowledge about the higher

level protocol, or the nature of the session level activity, in the

unsampled data stream, each flow can be thought of as having

packets of varying sizes that are more or less independent

from one another. Thus, the whole traffic profile results from

the addition of many independent random variables which, by

the central limit theorem, tend to balance among themselves

to produce a more predictable, homogeneous traffic aggre-

gate. However, simple inversion eliminates this multiplicity

of randomly distributed values by introducing a very strong

correlation effect, whereby the size of all the packets in a

reconstructed flow depend on the size of a very small set of

3The processing of the data was done using tools which are made available
to the public by the authors.

sampled packets. This eliminates the possibility for balancing

and thus increases the variability of the resulting stream, i.e.

its standard deviation.

However, the skewness and kurtosis do change. Skewness is

a measure of the asymmetry of the probability distribution of a

real-valued random variable. Roughly speaking, a distribution

has positive skew (right-skewed) if the right (higher value) tail

is longer and negative skew (left-skewed) if the left (lower

value) tail is longer (confusing the two is a common error).

Skewness, the third standardised moment, is written as γ1 and

defined as:

γ1 = µ3

σ3

where µ3 is the third moment about the mean and σ is the

standard deviation.

Kurtosis is more commonly defined as the fourth cumulant

divided by the square of the variance of the probability

distribution,

γ2 = κ4

κ2

2

= µ4

σ4 − 3

which is known as excess kurtosis. The ”minus 3” at the end

of this formula is often explained as a correction to make the

kurtosis of the normal distribution equal to zero. The skewness

is a sort of measure of the asymmetry of the distribution

function. The kurtosis measures the flatness of the distribution

function compared to what would be expected from a Gaussian

distribution.

Table II illustrates the packet rates p(t) per interval of

measurement. Inverted packet rates, by dividing p(t) by the

sampling probability q, are shown as pn(t). The distributions

before and after sampling are extremely close, and thus their

difference tends to exaggerate those small difference that they

do have. That is the reason of the enormous skewness and

kurtosis that are observed. The skewness of the reconstructed

stream is smaller than that of the unsampled stream this means

that the reconstructed distribution is more symmetric, that is

, it tends to diverge in a more homogeneous manner around

the mean. Additionally, it is positive, meaning that in both

cases the distribution tends to have longer tails towards large

packets rather than towards short packets, concentrating its

bulk on the smaller packets. If we concede that small flows

(flows consisting of a small number of packets) tend to contain

small packets, then it is clear that this smaller packets will

be underrepresented and the distribution will shift its weight

towards bigger packets (members of bigger flows). Thus, it

will become more symmetric and hence less skewed.

The kurtosis decreases in all of the considered examples.

This means that the reconstructed streams are more homo-

geneous and less prone to outliers when compared with the

original traces. Thus, more of the variance in the original

traces in packet size can be attributed to infrequent packets

that have inordinately big packets that were missed in the

sampling process, and thus the variance in the reconstructed

stream consists more of homogeneous differences and not

large outliers. However, both the reconstructed and unsampled

streams are leptokurtic and thus tend to have long, heavy tails.



TABLE II
THE STATISTICAL PROPERTIES ON PACKET RATES p(t)

Dataset,bin(secs) STD Skewness Kurtosis

p(t), 30 3.1162e+04 -0.4007 0.7415
pn(t), 30 3.1359e+04 -0.3584 0.6072

p(t) − pn(t), 30 5.4148e+03 9.1469 96.0659

p(t), 120 1.1215e+05 -0.3875 1.2027
pn(t), 120 1.1178e+05 -0.3759 1.2238

p(t) − pn(t), 120 3.0157e+03 4.7140 26.1079

p(t), 300 2.5128e+05 0.1305 1.6495
pn(t), 300 2.5152e+05 0.1433 1.6597

p(t) − pn(t), 300 2.1047e+03 2.4298 8.9377

B. The two-sample Kolmogorov-Smirnov test

The Two-Sample Kolmogorov-Smirnov test (KS test) is one

of the most useful and general non-parametric methods for

comparing two samples, as it is sensitive to differences in both

location and shape of the empirical cumulative distribution

functions of the two samples. A CDF was calculated for the

number of packets per flow and the number of octets per flow

for each of the 120 sampling intervals of 30 seconds each,

both for the sampled/inverted and unsampled streams. Then, a

Two-Sample KS-test with 5% significance level was performed

between the 120 unsampled and the 120 sampled & inverted

distributions. In every case the distributions before and after

sampling and inversion were found to be significantly differ-

ent, and thus it is very clear that the sampling and inversion

process significantly distorts the actual flow behaviour of the

network.

III. PRACTICAL IMPLICATIONS OF SAMPLING

The effects of sampling on network traffic statistics can be

measured from different perspectives. In this section we will

cover the theories behind the sampling strategy and use some

real data captures from CAIDA in an emulation approach to

demonstrate the performance constraints of systematic sam-

pling.

A. Inversion errors on sampled statistics

The great advantage of sampling is the fact that the first

order statistics do not show much variation when the sampling

is done at consistent intervals and from a large pool of

data. This enables the network monitoring to use the sampled

statistics to form a relatively good measure of the aggregate

measure of network performance. Figure 1 displays the data

rates d(t), in number of bytes seen per 30 second interval,

on the one hour trace. The inverted data d(t) is also shown

with diamond notation, showing the statistics gathered after

the sampled data is multiplied by the sampling rate. The black

dots display the relative error per interval, e(t) = d(t)−dn(t)
d(t) .

Figure 2 displays the packet rates p(t), the number of

packets per 30 second interval, versus the sampled and inverted

packet rates pn(t). In this figure, it can be observed that

the inversion does a very good job at nearly all times and
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Fig. 2. Packet rates per 30 second interval, original vs inversion of sampled

the relative error is negligible. This is a characteristics of

systematic sampling and is due to the central limit theorem.

It can be readily seen that the recovery of packet rates by

simple inversion is much better than the recovery of data

rates. This is because sampling one in a thousand packets

deterministically can be trivially inverted by multiplying by the

sampling rate (1000): we focus on packet level measurement,

as opposed to a flow level measurement. If the whole traffic

flow is collapsed into a single link, then if we sample one

packet out every thousand and then multiply that by the

sampling rate, we will get the total number of packets in that

time window. We believe that the small differences that we can

see in Figure 2 are due to the fact that at the end of the window

some packets are lost (because their ‘representative’ was not

sampled) or overcounted (a ‘representative’ for 1000 packets

was sampled but the time interval finished before they had

passed). We believe these errors happen between measurement

windows in time, i.e. they are window-edge effects.

The inversion property described above does not hold for

measuring the number of bytes in a sampling interval. Simple

inversion essentially assumes that all packets in a given flow

are the same size, and of course this assumption is incorrect.

It is to be expected that the greater the standard deviation of

packet size over an individual flow, the more inaccurate the

recovery by simple inversion will be regarding the number of

bytes per measurement interval.



B. Flow size and packet size distributions

Figure 3, displays the CDF of packet size distribution in all

the flows formed from the sampled and unsampled streams.

The little variation in the packet size distribution conforms to

the findings of the previous section where it was discussed

that the packet sampling has low impact on the packet size

distribution.
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Figure 4 (top) shows the effect that the distribution of packet

lengths can have on the distribution of flow lengths when

periodic packet sampling is applied. As flows reconstructed

from a sampled packet stream are predominantly formed by

just one packet, their length distribution follows that of single

packets (Figure 3). That is the reason for the sharp jump near

1500 octets, as this characteristic originates from the maximum

frame size in ethernet networks.

From Figure 4 (bottom) , it can be readily seen that, in the

sampled stream, more than 90 percent of flows consist of a

single packet, whereas in the unsampled case a much grater

diversity in flow lengths exists for small flows. This is due to

the fact that simple packet-based deterministic sampling under-

represents short flows, and those short flows that are indeed

detected by the procedure after sampling usually consist of a

single packet. Thus, short flows are either lost or recovered as

single packet flows, and long flows have their lengths reduced.

IV. RELATED WORK

There has been a great deal of worked done on analysis

of sampling process and inversion problem. Choi et al. have

explored the sampling error and measurement overhead of

NetFlow in [11] though they have not looked at inversion

process.

In [3], the authors have compared the Netflow reports with

those obtained from SNMP statistics and packet level traces,

but without using the sampling feature of NetFlow which is

perhaps the dominant version in use nowadays. Estan et al. [5]

have proposed a novel method of adapting the sampling rate at

a NetFlow router in order to keep the memory resources at a

constant level. This is done by upgrading the router firmware,

which can be compromised by an attacker injecting varying

traffic volume in order to take down the router. Also this work

has not considered the flow length statistics which are the

primary focus of our work.
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Hohn et al. [10] have proposed a flow sampling model

which can be used in an offline analysis of flow records formed

from an unsampled packet stream. In this model the statistics

of the original stream are recovered to a great extent. However

the intensive computing and memory resources needed in

this process prevents the implementation of such a scheme

on highspeed routers. They prove it impossible to accurately

recover statistics from a packet sampled stream, but based on

the assumption of packets being independent and identically

distributed

Roughan [12] has looked at statistical processes of active

measurement using Poisson and uniform sampling and has

compared the theoretical performance of the two methods.

Papagiannaki et al. at [8] have discussed the effect of sampling

on tiny flows when looking at generation of traffic matrices.

Brauckhoff el al. [15] have been looking at anomaly de-

tection using flow statistics, but without sampling. In [17] and

[16], authors have looked at inferring the numbers and lengths

of flows of original traffic that evaded sampling altogether.



They have looked at inversion via multiplication.

V. CONCLUSION

In this paper we have reviewed the effects of sampling

and flow record creation, as used by NetFlow, on the traffic

statistics which are reported by such a process. It is inevitable

that systematic sampling can no longer provide a realistic

picture of the traffic profile present on internet links. The

emergence of applications such as video on-demand, file

sharing, streaming applications and even on-line data process-

ing packages prevents the routers from reporting an optimal

measure of the traffic traversing them. In the inversion process,

it is a mistake to assume that the inversion of statistics by

multiplication by the sampling rate is an indicate of even the

first order statistics such as packet rates.

An extension to this work and the inversion problem entails

the use of more detailed statistics such as port numbers

and TCP flags in order to be able to infer the original

characteristics from the probability distribution functions of

such variables. This will enable a more detailed recovery of

original packet and data rates for different applications. The

inference of such probabilities, plus use of methods such as

Bayesian inference, would enable a forecasting method which

would enable the inversion of the sampled stream in near real

time.

In related work [18], we have looked at alternative flow syn-

thesis schemes, looking at techniques replacing the NetFlow,

such as use of hashing techniques using Bloom filters. The use

of a light weight flow indexing system will allow for a larger

number of flows to be present at the router, possibly increasing

the memory constraints and allowing for a higher sampling

rate, which will in turn lead to more accurate inversion.
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